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Overview 
•  Specifying costs and rewards 

−  DTMCs 
−  PRISM language 

•  Properties: expected reward values 
−  instantaneous 
−  cumulative 
−  reachability 
−  temporal logic extensions 

•  Model checking 
−  computing reward values 

•  Case study 
−  randomised contract signing 
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Costs and rewards 
•  We augment DTMCs with rewards (or, conversely, costs) 

−  real-valued quantities assigned to states and/or transitions 
−  these can have a wide range of possible interpretations 

•  Some examples: 
−  elapsed time, power consumption, size of message queue, 

number of messages successfully delivered, net profit, … 

•  Costs? or rewards? 
−  mathematically, no distinction between rewards and costs 
−  when interpreted, we assume that it is desirable to minimise 

costs and to maximise rewards  
−  we will consistently use the terminology “rewards” regardless 
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Reward-based properties 
•  Properties of DTMCs augmented with rewards 

−  allow a wide range of quantitative measures of the system 
−  basic notion used here: expected value of rewards 
−  formal property specifications will be in an extension of PCTL 

•  More precisely, we use two distinct classes of property… 

•  Instantaneous properties 
−  e.g. the expected value of the reward at some time point 

•  Cumulative properties 
−  e.g. the expected cumulated reward over some period 
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DTMC reward structures 
•  For a DTMC (S,sinit,P,L), a reward structure is a pair (ρ,ι) 

−  ρ : S → ℝ≥0 is the state reward function (vector) 
−  ι : S × S → ℝ≥0 is the transition reward function (matrix)  

•  Example (for use with instantaneous properties) 
−  “size of message queue”: ρ maps each state to the number of 

jobs in the queue in that state, ι is not used 
•  Examples (for use with cumulative properties) 

−  “time-steps”: ρ returns 1 for all states and ι is zero  
 (equivalently, ρ is zero and ι returns 1 for all transitions) 

−  “number of messages lost”: ρ is zero and ι maps transitions 
 corresponding to a message loss to 1 

−  “power consumption”: ρ is defined as the per-time-step 
 energy consumption in each state and ι as the energy cost of 
 each transition 
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Rewards in the PRISM language 

(instantaneous, state rewards) (cumulative, state rewards) 

(cumulative, state/trans. rewards) 
(up = num. operational components, 

wake = action label) 

(cumulative, transition rewards) 
(q = queue size, q_max = max. 

queue size, receive = action label) 

   rewards “total_queue_size” 
      true : queue1+queue2; 
   endrewards 

   rewards “time” 
      true : 1; 
   endrewards 

   rewards “power” 
      sleep=true : 0.25; 
      sleep=false : 1.2 * up; 
      [wake] true : 3.2; 
   endrewards 

   rewards "dropped" 
      [receive] q=q_max : 1; 
   endrewards 
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Expected reward properties 
•  Expected (“average”) values of rewards… 

•  Instantaneous 
−  “the expected value of the state reward at time-step k” 
−  e.g. “the expected queue size after exactly 90 seconds” 

•  Cumulative (time-bounded) 
−  “the expected reward cumulated up to time-step k” 
−  e.g. “the expected power consumption over one hour” 

•  Reachability (also cumulative) 
−  “the expected reward cumulated before reaching states T⊆S” 
−  e.g. “the expected time for the algorithm to terminate” 
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Expectation 
•  Probability space (Ω, Σ, Pr) 

−  probability measure Pr : Σ → [0,1] 

•  Random variable X 
−  a measurable function X : Ω → Δ 
−  usually real-valued, i.e.: X : Ω → ℝ 

•  Expected (“average”) value of the random variable: Exp(X) 

  

€ 

Exp(X) = X(ω)dPr
ω∈Ω
∫

  

€ 

Exp(X) = X(ω)⋅ Pr(ω)
ω∈Ω

∑ discrete case 
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Reachability + rewards 
•  Expected reward cumulated before reaching states T⊆S 
•  Define a random variable: 

−  XReach(T) : Path(s) → ℝ≥0 
−  where for an infinite path ω= s0s1s2… 

−  where kT = min{ j | sj ∈ T } 
•  Then define: 

−  ExpReach(s, T) = Exp(s, XReach(T)) 
−  denoting: expectation of the random variable XReach(T)  

with respect to the probability measure Prs, i.e.: 
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Computing the rewards 
•  Determine states for which ProbReach(s, T) = 1 

•  Solve linear equation system: 

−  ExpReach(s, T) =  

    

€ 

 
∞

0
ρ(s) + P(s,s' )⋅ ι(s,s' ) + ExpReach(s',  T)( )

s'∈S
∑

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

if ProbReach(s, T) <  1
if s ∈ T
otherwise
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Example 
•  Let ρ =  [ 0, 1, 0, 0 ] and ι(s,s’) = 0 for all s,s’ ∈ S 
•  Compute ExpReach(s0, {s3}) 

−  (“expected number of times pass through s1 to get to s3”) 
•  First check: 

−  ProbReach({s3}) = { 1, 1, 1, 1 } 
•  Then solve linear equation system: 

−  (letting xi = ExpReach(si, {s3})): 
−  x0 = 0 + 1·(0 + x1) 
−  x1 = 1 + 0.01·(0+x2)+0.01·(0+x1)+0.98 ·(0+x3) 
−  x2 = 0 + 1·(0 + x0) 
−  x3 = 0 
−  Solution: ExpReach({s3}) = [ 100/98, 100/98, 100/98, 0 ] 

•  So: ExpReach(s0, {s3}) = 100/98 ≈ 1.020408 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{succ} 

{try} 
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Specifying reward properties 
•  PRISM extends PCTL to include expected reward properties 

−  add an R operator, which is similar to the existing P operator 

−  φ  ::=  …  |  P~p [ ψ ]  |  R~r [ I=k ]  |  R~r [ C≤k ]  |  R~r [ F φ ] 

−  where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ 

•  R~r [ · ] means “the expected value of · satisfies ~r” 

“reachability” 

 expected 
reward is ~r 

“cumulative” “instantaneous” 
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Random variables for reward formulae 
•  Definition of random variables for the R operator: 

−  for an infinite path ω= s0s1s2… 

−  where kφ = min{ j | sj ⊨ φ } 

XFφ 
same as 

XReach(Sat(φ)) 
from earlier 
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Reward formula semantics 
•  Formal semantics of the three reward operators: 

•  For a state s in the DTMC:  

−  s ⊨ R~r [ I=k ]  ⇔  Exp(s, XI=k) ~ r 
−  s ⊨ R~r [ C≤k ]  ⇔  Exp(s, XC≤k) ~ r 
−  s ⊨ R~r [ F Φ ]  ⇔  Exp(s, XFΦ) ~ r 

where: Exp(s, X) denotes the expectation of the random variable  
X : Path(s) → ℝ≥0 with respect to the probability measure Prs 

•  We can also define R=? […] properties, as for the P operator 
−  e.g. R=? [ F Φ ] returns the value Exp(s, XFΦ) 

Exp(s, XFΦ) 
same as 

ExpReach(s, Sat(Φ)) 
from earlier 
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Model checking reward operators 
•  Like for model checking P~p […], to check R~r […] 

−  compute reward values for all states, compare with bound r 

•  Instantaneous: R~r [ I=k ] - compute Exp(XI=k)  
−  solution of recursive equations 
−  essentially: k matrix-vector multiplications 

•  Cumulative: R~r [ C≤t ] - compute Exp(XC≤k)  
−  solution of recursive equations 
−  essentially: k matrix-vector multiplications 

•  Reachability: R~r [ F φ ] - compute Exp(XFΦ) 
−  graph analysis + linear equation system 
−  (see computation of ExpReach(s, T) earlier) 

Model checking 
R operator 

same complexity 
as for P operator 
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Model checking R~r [ I=k ] 
•  Expected instantaneous reward at step k 

−  can be defined in terms of transient probabilities for step k 

•  Exp(s, XI=k) = Σs’∈S πs,k(s’) · ρ(s’) 

•  Exp(XI=k) = Pk · ρ 

•  Yielding recursive definition: 
−  Exp(XI=0) = ρ 
−  Exp(XI=k) = P · Exp(XI=(k-1) ) 
−  i.e. k matrix-vector multiplications 
−  note: “backwards” computation (like bounded until prob.s)  

rather than “forwards” computation (like transient prob.s) 
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Example 
•  Let ρ =  [ 0, 1, 0, 0 ] and ι(s,s’) = 0 for all s,s’ ∈ S 
•  Compute Exp(s0, XI=2) 

−  (“probability of being in state s1”) 
−  Exp(XI=0) = [ 0, 1, 0, 0 ] 
−  Exp(XI=1) = P · Exp(XI=0)  

−  Exp(XI=2) = P · Exp(XI=1)  

•  Result: Exp(s0, XI=2) = 0.01 

s1 s0 

s2 

s3 

0.01 
0.98 

0.01 

1 

1 

1 

{fail} 

{succ} 

{try} 
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Model checking R~r [ C≤k ] 
•  Expected reward cumulated up to time-step k 

•  Again, a recursive definition: 

•  And in matrix/vector notation: 

−  where ∙ denotes Schur (pointwise) matrix multiplication 
−  and 1 is a vector of all 1s 
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Case study: Contract signing 
•  Two parties want to agree on a contract 

−  each will sign if the other will sign, but do not trust each other 
−  there may be a trusted third party (judge) 
−  but it should only be used if something goes wrong 

•  In real life: contract signing with pen and paper 
−  sit down and write signatures simultaneously 

•  On the Internet… 
−  how to exchange commitments on an asynchronous network?  
−  “partial secret exchange protocol” [EGL85] 
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Contract signing – EGL protocol 
•  Partial secret exchange protocol for 2 parties (A and B) 

•  A (B) holds 2N secrets a1,…,a2N (b1,…,b2N)  
−  a secret is a binary string of length L 
−  secrets partitioned into pairs: e.g. { (ai, aN+i) | i=1,…,N } 
−  A (B) committed if B (A) knows one of A’s (B’s) pairs 

•  Uses “1-out-of-2 oblivious transfer protocol” OT(S,R,x,y) 
−  Sender S sends x and y to receiver R 
−  R receives x with probability ½ otherwise receives y 
−  S does not know which one R receives 
−  if S cheats then R can detect this with probability ½ 
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EGL protocol - Step 1 

1…L 

1…N 

N+1…2N 

1…L 

1…N 

N+1…2N 

OT(A,B,ai,aN+i) 

Party A Party B 

OT(B,A,bi,bN+i) 

(repeat for i=1…N)  
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EGL protocol - Step 2 

1…L 

1…N 

N+1…2N 

1…L 

1…N 

N+1…2N 

Party A Party B 
 A sends bit i  
of aj to B for 

j=1…2N 

 Then B does 
the same  

for bj 

(repeat for i=1…L)  
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Contract signing - Results 
•  Modelled in PRISM as a DTMC (no concurrency) [NS06] 

•  Highlights a weakness in the protocol 
−  party B can act maliciously by quitting the protocol early 
−  this behaviour not considered in the original analysis 

•  PRISM analysis shows 
−  if B stops participating in the protocol as soon as he/she has 

obtained one of A pairs, then, with probability 1, at this point: 
•  B possesses a pair of A’s secrets 
•  A does not have complete knowledge of any pair of B’s secrets 

−  protocol is not fair under this attack:  
−  B has a distinct advantage over A 
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Contract signing - Results 
•  The protocol is unfair because in step 2:  

−  A sends a bit for each of its secret before B does 

•  Can we make this protocol fair by changing the message 
sequence scheme?  

•  Since the protocol is asynchronous the best we can hope 
for is: 
−  B (or A) has this advantage with probability ½ 

•  We consider 3 possible alternative message sequence 
schemes (EGL2, EGL3, EGL4) 
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    (step 1) 
    … 
    (step 2) 
    for ( i=1,…,L ) 
        for ( j=1,…,N )  A transmits bit i of secret aj to B 
        for ( j=1,…,N )  B transmits bit i of secret bj to A 
        for ( j=N+1,…,2N )  A transmits bit i of secret aj to B 
        for ( j=N+1,…,2N )  B transmits bit i of secret bj to A 

Contract signing - EGL2 
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Modified step 2 for EGL2 

1…L 

1…N 

N+1…2N 

1…L 

1…N 

N+1…2N 

Party A Party B 
 A sends bit i  
of aj to B for 

j=1…N 

 Then B does 
the same  

for bj 

(after j=1…N, send j=N+1…2N) 
(then repeat for i=1…L)  
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    (step 1) 
    … 
    (step 2) 
    for ( i=1,…,L )  for ( j=1,…,N ) 
        A transmits bit i of secret aj to B 
        B transmits bit i of secret bj to A 
    for ( i=1,…,L )  for ( j=N+1,…,2N ) 
        A transmits bit i of secret aj to B 
        B transmits bit i of secret bj to A 

Contract signing - EGL3 
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Modified step 2 for EGL3 

1…L 

1…N 

N+1…2N 

1…L 

1…N 

N+1…2N 

Party A Party B 
 A sends bit i  
of aj to B for 

 Then B does 
the same  

for bj 

(repeat for j=1…N and for i=1…L) 
(then send j=N+1…2N for i=1…L) 
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    (step 1) 
    … 
    (step 2) 
    for ( i=1,…,L )  
        A transmits bit i of secret a1 to B 
        for ( j=1,…,N )  B transmits bit i of secret bj to A 
        for ( j=2,…,N )  A transmits bit i of secret aj to B 
    for ( i=1,…,L ) 
        A transmits bit i of secret aN+1 to B 
        for ( j=N+1,…,2N )  B transmits bit i of secret bj to A 
        for ( j=N+2,…,2N )  A transmits bit i of secret aj to B 

Contract signing - EGL4 
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Modified step 2 for EGL4 

1…L 

1…N 

N+1…2N 

1…L 

1…N 

N+1…2N 

Party A Party B  A sends bit i  
of a1 to B 

 Then A sends 
bit i of aj to B  

for j=2…N 

(repeat for i=1…L) 
(then send j=N+1…2N in same fashion) 

 Then B sends 
bit i of bj to B  

for j=1…N 
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Contract signing - Results 
•  The chance that the protocol is unfair 

−  probability that one party gains knowledge first  
−  P=? [ F knowB ∧ ¬knowA ] and P=? [ F knowA ∧ ¬knowB ] 
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Contract signing - Results 
•  The influence that each party has on the fairness 

−  once a party knows a pair, the expected number of messages 
from this party required before the other party knows a pair 

R=? [ F knowA ] 

Reward structure: 

Assign 1 to transitions 
corresponding to messages 
being sent from B to A 
after B knows a pair  

(and 0 to all other transitions) 
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Contract signing - Results 
•  The duration of unfairness of the protocol  

−  once a party knows a pair, the expected total number of 
messages that need to be sent before the other knows a pair 

R=? [ F knowA ] 

Reward structure: 

Assign 1 to transitions 
corresponding to any message 
being sent between A and B 
after B knows a pair  

(and 0 to all other transitions) 
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Contract signing - Results 
•  Results show EGL4 is the ‘fairest’ protocol 

•  Except for “duration of fairness” measure 
−  expected messages that need to be sent for a party to know a 

pair once the other party knows a pair 
−  this value is larger for B than for A 
−  and, in fact, as n increases, this measure: 

•  increases for B 
•  decreases for A 

•  Solution: 
−  if a party sends a sequence of bits in a row (without the other 

party sending messages in between), require that the party 
send these bits as as a single message 
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Contract signing - Results 
•  The duration of unfairness of the protocol  

−  (with the solution on the previous slide applied to all variants) 
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Summing up… 
•  Costs and rewards 

−  real-valued assigned to states/transitions of a DTMC 
•  Properties 

−  expected instantaneous/cumulative reward values 
−  PRISM property specifications: adds R operator to PCTL 

•  Model checking 
−  instantaneous: matrix-vector multiplications 
−  cumulative: matrix-vector multiplications 
−  reachability: graph analysis + linear equation systems 

•  Case study 
−  randomised contract signing 


